Deep generative models
Generator networks

In this lecture, we’ll look at generative modeling, The
business of training probability models that are too
complex to give us an explicit density function over our
feature space, but that do allow us to sample points. If we
train them well, we get points that look like those in our
dataset.

These kinds of methods are often combined with neural
nets to produce very complex, high-dimensional objects, for
instance images.

|section|Generator networks|
|video|https://www.youtube.com/embed/jAxUolSXGtg|
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Here is the example, we gave in the first lecture. A deep
neural network from which we can sample highly realistic
images of human faces.

source: A Style-Based Generator Architecture for
Generative Adversarial Networks, Karras et al.

visual shorthand

\/

any neural network

a (standard)
multivariate normal distribution

In the rest of the lecture, we will use the following visual
shorthand. The diagram on the left represents any kind of
neural network. We don’t care about the precise
architecture, whether it has one or a hundred hidden layers
and whether it uses fully connected layers or convolutions,
we just care about the shape of the input and the output.

The image on the right represents a multivariate normal
distribution. Think of this as a contour line for the density
function. We've drawn it in a 2D space, but we’ll use it as a
representation for MVNs in higher dimensional spaces as
well. If the MVN is nonstandard, we’ll draw it as an ellipse
somewhere else in space.


http://mlvu.github.io
https://arxiv.org/abs/1812.04948
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A plain neural network is purely deterministic. It translates
an input to an output and does the same thing every time
with no randomness. How do we turn this into a probability
distribution?

The first option is to take the output and to interpret it as
the parameters of a probability distribution. We simply run
the neural network for some input, let it produce some
numbers as an output, and then interpret those as the
parameters to a probability distribution. This distribution
then defines a probability on a separate space. The network
plus the probability distribution define a probability
distribution conditional on the network input.
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If this sounds abstract, note that it is something we've been
doing already since the early lectures. For instance: to do
binary classification, we defined a neural network with one
sigmoid activated output node. We took that output value as
the probability that the class was the positive one, but we
could also say we're parametrizing a Bernoulli distribution
with this value, and the Bernoulli distribution defines
probabilities over the space containing the two outcomes
"Class=pos" and "Class=neg".

If we do this with a multiclass problem and a softmax
output, we are parametrizing a multinomial distribution.

Note that linear regression is just a special case of this with
a very simple (one layer) neural net.
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Another example is regression, either linear or with a
neural network.

Here we simply produce a target prediction for x. However,
what we saw in the previous lecture is that if we interpret
this as the mean of a normal distribution on y, then
maximizing the likelihood of this distribution is equivalent
to the least squares loss function.



neural network in this way, training it is pretty
straightforward. We can easily compute the log-likelihood
output distribution maximum log likelihood loss X X
over our whole data, which then becomes a loss function.
Bernoulli Binary cross-entropy With backpropagation and gradient descent, we can train
c | c | the parameters of the neural network to maximize the
ategorical ategorical cross-entro
9 9 i likelihood of the data under the model
Normal (mean only) Mean squared error loss . . .
For many distributions, this leads to loss functions that
1 .
Normal (mean and variance) —=) o+ Pl 1y)? we've seen already.
- 1
1
Laplace (median only) Mean absolute error loss The loss function for a normal output distribution with a
, mean and variance, is a modification of the squared error.

We can set the variance larger to reduce the impact of the
squared errors, but we pay a penalty of the logarithm of
sigma. If we know we are going to get the output value for
instance i exactly right, then we will get almost no squared
error and we can set the variance very small, paying little
penalty. If we we’re less sure, then we expect a sizable
squared error and we should increase the variance to
reduce the impact a little. This way, we get a neural network
that tells us not just what its best guess is, but also how
sure it is about that guess.

Neural networks are very poor at estimating how sure they
should be, so take this with a grain of salt, but in principle,
the machinery is there for the network to provide an
indication of certainty.

probability distribution For a solution that applies to high-dimensional outputs like

images, we can use the outputs to parametrize a
multivariate normal distribution. Here we'll parametrize
both the mean and the covariance matrix.

p(yIx)=N(ylwX) with(p,I)="f(x)
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If we provide both the the mean and the variance of an
output distribution, it looks like this (for an n-dimensional
output space). We simply split the output layer in two parts,
and interpret one part as the mean and the other as the
covariance matrix.

Since representing a full covariance matrix would grow
very big for high-dimensional outputs, we usually assume
that the covariance matrix is diagonal (all off-diagonal
values are zero). That way the representation of the
covariance requires as many arguments as the
representations of the mean, and we can simply split the
output vector into two halves.

We will call the resulting normal distribution a diagonal
Gaussian (the word isotropic is also used).

Equivalently, we can think of the output distribution as
putting an independent 1D Gaussian on each dimension,
with a mean and variance provided for each.

For the mean, we can use a linear activation, since it can
have any value, including negative values. However, the
values of the covariance matrix need to be positive. To
achieve this, we often exponentiate them. We’'ll call this an
exponential activation. An alternative option is the softplus
function In(1 + ex), which grows less explosively.

for images
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Here’s what that looks like when we generate an image. The
output distribution gives us a mean value for every channel
of every pixel (a 3-tensor) and a corresponding variance for
every mean. If we look at what that tells us about the red
value of the pixel at coordinate (8, 7) we see that we get a
univariate Gaussian with a particular mean and a variance.
The mean tells us the network’s best guess for that value,
and the variance tells us how certain the network is about
this output.



mixture density networks
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If we want to go all out, we can even make our neural
network output the parameters of a Gaussian mixture
model. This is called a mixture density network.

All we need to do, is make sure that we have one output
node for every parameter required, and apply different
activations to the different kinds of parameters. The means
get a linear activation and the covariances get an
exponential activation as before. The component weights
need to sum to one, so we need to give them a softmax
activation (over just these three output values).

If we want to train with maximum likelihood, we encounter
this sum-inside-a-logarithm function again, which is
difficult to deal with. But this time, it’s not such a headache.
As we noted in the last lecture we can work out the gradient
for this loss, it’s just a very ugly function. Since we are using
backpropagation anyway, that needn’t worry us here. All we
need to work out are the local derivatives or backward
functions for functions like the logarithm and the sum, and
those are usually provided by systems like Pytorch and

mixture density networks
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image source: Mixture Density Networks, Christopher Bishop, 1994 12

The mixture density network may seem like overkill, but it’s
actually very useful in regression problems where multiple
answers may be valid.

Consider the problem of inverse kinematics in robotics. We
have a robot arm with two joints, and we know where in
space we want the hand of the arm to be. What angles
should we set the two joints to? This is a great application
for machine learning: it’s a relatively simple, smooth
function. It’s easy to generate examples, and explicit
solutions are a pain to write, and not robust to noise in the
control of the robot. So we can solve it with a neural net.

The inputs are the two coordinates where we want the
hand to be (x1, X2), and the outputs are the two angles we
should set the joints to (81, 82). The problem we run into, is
that for every input, there are two solutions. One with the
elbow up, and one with the elbow down. A normal neural
network trained with an MSE loss would not pick one or the
other, but it would average between the two.

A mixture density network with two components can fix
this problem. For each input, it can simply put its
components on the two valid solutions.

image source: Mixture Density Networks, Christopher
Bishop, 1994


http://publications.aston.ac.uk/id/eprint/373/
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image source: Mixture Density Networks, Christopher Bishop, 1994

The problem with the robot arm is that the task is uniquely
determined in one direction—every configuration of the
robot arms leads to a unique point in space for the hand—
but not when we try to reason backward from the hand to
the configuration of the joints.

Here is a 2D version with that problem. Given x, we can
predict t unambiguously. But, if we flip the problem and try
to predict x given t, then at values like x=0.5, there are
multiple predictions with high density. A network with a
single Gaussian head (i.e. what we are implicitly doing
when we are using least squares loss), will try to fit its
Gaussian over both clusters of the data. This puts the mean,
which is our ultimate prediction, between these two
clusters, in a region where there is no data at all.

We can give the neural network control over the variance of
this distribution as well, but all that achieves is that the
variance grows to cover both groups of points. The mean
stays in the same place.

By contrast, the mixture density network can output a
distribution with two peaks. This allows it to cover the two
groups of points in the output, and so solve the problem in a
much more useful way.

The general problem in the middle picture is called mode
collapse: we have a problem with multiple acceptable
answers, and instead of picking one of the answers at
random, the neural network averages over all of them and
produces a terrible answer.

mode collapse
Il
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If our data is spread out in space in a complex, clustered
pattern, and we fit a simple unimodal distribution to it
(that is, a distribution with one peak) then the result is a
distribution that puts all the probability mass on the
average of our points, but very little probability mass where
the points actually are.


http://publications.aston.ac.uk/id/eprint/373/

Mixture density networks go some way towards letting us
capture more complex distributions in our neural networks,
but when we want to capture something as complex and
rich as the distribution on images representing human
faces, they're still insulfficient.

A mixture model with k components gives us k modes. So in
the space of images, we can pick k images to give high
probability and the rest is just a simple Gaussian shape
around those k points. The distribution on human faces has
infinitely many modes (all possible human faces) that
should all be about equally likely. To achieve a distribution

this complex, we need to use the power of the neural net,
not just to choose a finite set of modes, but to control the
whole shape of the probability function.

Letting the neural network pick the parameters of a
distribution with a simple shape is only ever going to
produce a distribution with a simple shape. We need to
change our approach.

probability distribution Here’s a more powerful idea: we put the probability

distribution at the start of the network instead of at the end
tion 2 of it. We sample a point from some straightforward

option 2:
distribution, usually a standard normal distribution, and we

feed that point to a neural net. The result of these two steps
is a random point, so we’ve defined another probability
generator network distribution. We call this construction a generator network.
p(x)
Compare this to how we defined parametrized multivariate

normals in the previous lecture: we started with a standard
normal distribution, and we applied a linear
transformation. This is the same thing, but we've replaced

the linear transformation by a nonlinear one.

If we ignore the value of the input, we are now sampling
from an unconditional distribution on x.

a small experiment To see what kind of distributions we might get when we do

2 nodes this, let’s try a little experiment.

We wire up a random network as shown: a two-node input

layer, followed by 12, 100-node fully-connected hidden

layers with ReLU activations., and a final transformation
100 nodes back to two points. We don’t train the network. We just use

Glorot initialisation to pick the parameters, and then

sample some points. Since the output is 2D, we can easily

scatter-plot it.
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Here’s a plot of 100k points sampled in this way. Clearly,
we’ve defined a highly complex distribution. Instead of
having a finite set of single points as modes, we get strands
of high probability in space, and sheets of lower, but
nonzero probability. Remember, this network hasn’t been
trained, so it’s not representing anything meaningful, but it
shows that the distributions we can represent in this way is
a highly complex family.

Note that the variance has shrunk, and the mean has drifted
away from (0, 0); apparently our weight initialisation is not
quite perfect.
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We can also use this trick to generate images. A normal
convolutional net starts with a low-channel, high resolution
image, and slowly decreases the resolution by maxpooling,
while increasing the number of channels. Here, we reverse
the process. We shape our input into a low resolution image
with a large number of channels. We slowly increase the
resolution by upsampling layers, and decrease the number
of channels.

We can use regular convolution layers, or deconvolutions,
which are a kind of upside-down convolution. Both
approaches give us effective generator networks for images.

We see, that even without training, we have produced a
distribution on images that is very complex and non-
uniform.

I've enhanced the contrast and saturation in these images to
make the colors stand out a little more.

option 3: both
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probability distribution

z
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Of course, we can also use both options: we sample the
input from a standard MVN, interpret the output as another
MVN, and then sample from that.

In these kinds of generator networks, the input is often
called z, and the space of inputs is often called the latent
space. As we will see later, this maps perfectly onto the
hidden variable models of the previous lecture.



the naive approach

loop:
Sample a random instance x from the data
Generate a random output y

Compute loss(x, y) and backpropagate

loss: mean-squared error, binary cross-entropy, L1, etc.
Anything that computes a distance between x and y.

So the big question is, how do we train a generator
network? Given some data, how do we set the weights of
the network so that the sampled outputs start to look like
the examples we have in our data?

We’ll start with something that doesn’t work, to help us
understand why the problem is difficult. Here is a naive
approach: we simply sample a random point x (e.g. a
picture) from the data, and sample a point y from the model
and train on how close they are.

The loss could be any distance function between two
tensors. The mean-squared error over the elements is a
simple approach. If the elements are values between 0 and
1 (like in images), the binary cross-entropy makes sense
too. For images the absolute value of the error (also called
L1 loss) is also popular.

mode collapse

If we implement this naive approach, we do not get a good
probability distribution. Instead, we get mode collapse.

Here is a schematic example of what's happening: the blue
points represent the modes (likely points) of the data. The
green point is generated by the model. It’s close to one of
the blue points, so the model should be rewarded, but it's
also far away from almost all of the other points. During
training, there’s no guarantee that we will pair it up with
the correct point, and we are likely to compute the loss to a
completely different point.

On average the model is punished for generating such
points much more often than it is rewarded. The model that
generates only the open point in the middle gets a smaller
loss (and less variance). Under backpropagation, neural
networks tend to converge to a distribution that generates
only the open point over and over again.

In other words, the many different modes (areas of high
probability) of the data distribution end up being averaged
(“collapsing”) into a single point.

mode collapse

Even though we have a probability distribution that is able
to represent highly complex, multi-modal outputs, if we
train it like this, we still end up producing a unimodal
output centered on the mean of our data. If the dataset
contains human faces, we get a fuzzy average of all faces,
not a sample with individual details.

How do we get the the network to imagine details, instead
of averaging over all possibilities?



training generator networks

Generative Adversarial Networks
Train an adversary to tell fake data from real data.

(Variational) Autoencoders
Train an encoder to tell us which data point a generated point should be compared to.

There are two main approaches: GANs and variational
autoencoders. We'll give a quick overview of the basic
principle of GANs in the next part, and then a more detailed
treatment of autoencoders and variational autoencoders in
the last two parts.

Deep generative models

Generative Adversarial Networks

In the last video, we defined generator networks, and we
saw that they represent a very rich family of probability
distributions. We also saw, that training them can be a
tricky business.

In this video we’ll look one way of training such networks:
the method of generative adversarial networks (GANs).

|section|Generative adversarial networks|
|video|https://www.youtube.com/embed/eaWxDebDDo8|
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GANs originated just after Convolutional networks were
breaking new ground, showing spectacular, sometimes
super-human, performance in image labeling. The
suggestion arose that perhaps convolutional networks were
doing more or less the same as what humans do when they
look at something.

To verify this, researchers decided to start investigating
what kind of inputs would make a trained convolutional
network give a certain output. This is easy to do, you just
compute the gradient with respect to the input of the
network, and train the input to maximise the activation of a
particular label, while keeping the parameters of the
network fixed.

This is similar to the feature visualizing approach we saw
before, but you do it on the output nodes instead of the
hidden nodes.

You would expect that if you start with a random image, and
follow the gradient to maximize the activation of the output
node corresponding to the label “bus”, you'd get a picture of


http://mlvu.github.io

a bus. Or at least something that looks a little bit like a bus.
What you actually get is something that is indistinguishable
from the noise you started with. Only the very tiniest of
changes is require to make the network see a bus.

These are called adversarial examples. Instances that are
specifically crafted to trip up a given model.

correct

adversarial examples

+distort ostrich correct  +distort

ostrich

The researchers also found that if they started the search
not at a random image, but at an image of another class, all
that was needed to turn it into another class (according to
the network) was a very small distortion. So small, that to
us the image looks unchanged. In short, a tiny change to the
image is enough to make a convolutional neural net think
that a picture of a bus is a picture of an ostrich.

Adversarial examples are an active area of research (both
how to generate them and make models more robust
against them).

Source: Eykholt, Kevin, et al."Robust

the IEEE Conference on « 01

Even manipulating objects in the physical world can have
this effect. A stop sign can be made to look like a different
traffic sign by the simple addition of some stickers. Clearly,
this has some worrying implications for the development of
self-driving cars.


http://karpathy.github.io/2015/03/30/breaking-convnets/

realising that if you can generate adversarial examples
loop: automatically, you can also add them to the dataset as
negatives and retrain your network to make it more robust.
train a classifier to tell Xpos from Xneg You can simply tell your network that these things are not
Generate adversarial examples stop signs. Then, once your network is robust to the original
Cleary not s, but the lasifirthinks 0 anyway adversarial examples, you can generate some new
Add the adversarial examples to Xieg adversarial examples, and start the whole thing over again.
We can think of this as a kind of iterated 2 player game (or
The classifier (discriminator) gets more robust, the an arms race). The discriminator (our classifier) tries to get
generator gets more realistic. good enough to tell fake data from real data and the
i generator (the algorithm that generates the adversarial

examples) tries to get good enough to fool the
discriminator.

This is the basic idea of the generative adversarial network.

basic approach the “vanilla GAN”

- Vanilla GANs

[

- Conditional GANs

- CycleGAN
- StyleGAN
0
end-to-end GANs Generating adversarial examples by gradient descent is
possible, but it's much nicer if both our generator and our
generator: G discriminator: D discriminator are separate neural networks. This will lead

to a much cleaner approach for training GANs.

We will draw the two components like this. The generator
takes an input sampled from a standard MVN and produces
an image. This is a generator network as described in the
previous video. We don't give it an output distribution (i.e.

|:| we're using option 2 from the previous part).

The discriminator takes an image and classifies it as

\/

Positive (a real image of the target class) or Negative (a fake

image sampled from the generator).

If we have other images that are not of the target class, we
can add those to the negative examples as well, but often,
the positive class is just our dataset (like a collection of
human faces), and the negative class is just the fake images
created by the generator.



the discriminator
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To train the discriminator, we feed it examples from the
positive class, and train it to classify these as Pos.

We also sample images from the generator (whose weights
we keep fixed) and train the discriminator to recognize
these as negative. At first, these will just be random noise,
but there’s little harm in telling our network that such
images are not busses (or whatever our positive class is).

Note that since the generator is a neural network, we don’t
need to collect a dataset of fake images which we then feed
to the discriminator. We can just stick the discriminator on
top of the generator, making a single computation graph,
and train it by gradient descent to classify the result as
negative. We just need to make sure to freeze the weights of
the generator, so that gradient descent only updates the
discriminator.

the generator

Pos

D freeze
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Then, to train the generator, we freeze the discriminator
and train the weights of the generator to produce images
that cause the discriminator to label them as Positive.

This step may take a little time to wrap your head around. If
it helps, think of the whole disciminator as a very
complicated loss function. Whatever the generator
produces, the more likely the discriminator is to call it
positive, the lower the loss.

We don’t need to wait for either step to converge. We can
just train a the discriminator for one batch (i.e. one step of
gradient descent) and then train the generator for one
batch, and so on.

And this is what we’ll call the vanilla GAN.

conditional GAN

Labels to Facade BW to Color

output

input

output output

Sometimes we want to train the network to map an input to
an output, but to generate the output probabilistically. For
instance, when we train a network to color in a black-and-
white photograph of a flower, it could choose many colors
for the flower. We want to avoid mode collapse here:
instead of averaging over all possible colors, giving us a
brown or gray flower, we want it to pick one color, from all
the possibilities.

A conditional GAN lets us train generator networks that can
do this.



generator is now a function

In a conditional GAN, the generator is a function with an
image input, which it maps it to an image output. However,
it uses randomness to imagine specific details in the output.

In this example, it imagines the photograph corresponding
to a line drawing of a shoe. Running this generator twice
would result in different shoes that are both “correct”
instantiations of the input line drawing.

source: Image-to-Image Translation with Conditional
Adversarial Networks (2016), Phillip Isola Jun-Yan Zhu et al.

To train a conditional GAN, we give the discriminator pairs
of inputs and outputs. If these come from the generator,
they should be classified as fake (negative) and if they come
from the data, they should be classified as real (positive).

The generator is trained in two ways.

1. We freeze the weights of the discriminator, as before,
and train the generator to produce thins that the
discriminator will think are real.

2. We feed it and input from the data, and backpropagate
on the corresponding output (using L1 loss).

There are many more details you need to be aware of to
train a model like this well, but for now we will just focus on
the high-level picture.

for unpaired images
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source; Unpaired 7) Zhu etal

The conditional GAN works really well, but only if we have
an example of a specific output that corresponds to a
specific input. For some tasks, we don’t have paired images.
We only have unmatched bags of images in two domains.
For instance, we know that a picture of a horse can be
turned into a picture of that horse as a zebra (a skilled
painter could easily do this), but we don't have a lot of
paired images of horses and corresponding zebras. All we
have is a large number of horse images and a large number
of zebra images.

If we randomly match one zebra image to a horse image,
and train a conditional GAN on this, all we get is mode
collapse.


https://phillipi.github.io/pix2pix/
https://phillipi.github.io/pix2pix/
https://junyanz.github.io/CycleGAN/

CycleGAN

Transformations are always learned both ways. Ingredients:

Zebras > Horses

- Horse discriminator

- Zebra discriminator

-

- Horse-to-zebra generator (G)

zebra —} horse

- Zebra-to-horse generator (F)

horse —* zebra

CycleGANSs solve this problem using two tricks.

First, we train generators to perform the transformation in
both directions. We train both a horse-to-zebra generator
and a zebra-to-horse generator. Then each horse in our
dataset is transformed into a zebra and back again.This
gives us a fake zebra picture, which we can use to train a
zebra discriminator, together with the real zebra pictures.
We do the same thing the other way around: we transform
the zebras to fake horses and back again, and use the fake
horses together with the real horses to train a horse
discriminator.

Second, we add a cycle consistency loss. When we
transform a horse to a zebra and back again, we should end
up with the same horse again. The more different the final
horse picture is from the original, the more we punish the
generator networks.

CycleGAN
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Think of the generators as practicing steganography.
. hiding a horse picture inside a zebra picture.

source: Unpaired i i 7) Zhu etal

Here is the whole process in a diagram.

One way to think of this is as the generators practicing
steganography: hiding a secret message inside another
innocent message. The generators are trying to hide a
picture of a horse inside a picture of a zebra. The cycle
consistency loss ensures that all the information of the
horse picture is in the zebra picture and the horse picture
can be fully decoded from the zebra picture. The
discriminator’s job is to tell which of the zebra pictures it
sees have a horse hiding in it.

If we have a strong discriminator and the generator can still
fool it, then we get very realistic zebra pictures with horses
hidden inside. Since the obvious way to make this
transformation is to transform the horse into the zebra in
the way we would do it, this is the transformation that the
network learns.

Input Output Input Output
ST - . -

The CycleGAN works surprisingly well. Here’s how it maps
photographs to impressionist paintings and vice versa.


https://junyanz.github.io/CycleGAN/

It doesn’t always work perfectly, though.

StyleGAN

N ——

—O— . R
.—'—.——}!—

[ —

—O— — W

per-layer noise

L)
latent vector

irce: A Style-Based Generator Architecture for Generative Adversarial Networks, Karras et

Finally, let’s take a look at the StyleGAN, the network that
generated the faces we first saw in the introduction. This is
basically a Vanilla GAN, with most of the special tricks in the
way the generator is constructed. It uses too many tricks to
discuss here in detail, so we’ll just focus on one aspect: the
idea that the latent vector is fed to the network at each
stage of its forward pass.

Since an image generator starts with a coarse (low
resolution), high level description of an image, and slowly
fills in the details, feeding it the latent vector at every layer
(transformed by an affine transformation to fit it to the
shape of the data at that stage), allows it to use different
parts of the latent vector to describe different aspects of the
image (the authors call these “styles”).

The network also receives separate extra random noise per
layer, that allows it to make random choices. Without this,
all randomness would have to come from the latent vector.

destination

#

changing the latent vector

To see how this works, we can try to manipulate the
network, by changing the latent vector to another for some
of the layers. In this example all images on the margins are
people that are generated for a particular single latent
vector.

We then re-generate the image for the destination, except
that for a few layers (at the bottom, middle or top), we use
the source latent vector instead.

As we see, overriding the bottom layers changes things like
gender, age and hair length, but not ethnicity. For the
middle layer, the age is largely taken from the destination
image, but the ethnicity is now override by the source.
Finally for the top layers, only surface details are changed.

This kind of manipulation was done during training as well,
to ensure that it would lead to faces that fool the
discriminator.
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changing the noise

Let’s look at the other side of the network: the noise inputs.

If we keep all the latent and noise inputs the same except
for the very last noise input, we can see what the noise
achieves: the man’s hair is equally messy in each generated
example, but exactly in what way it's messy changes per
sample. The network uses the noise to determine the
precise orientation of the individual “hairs”.

- Evaluation: Inception score, FID score
- Batch normalisation

- Relativistic GANs

GANSs: not discussed

- Wasserstein distance

We’ve given you a high level overview of GANs, which will
hopefully give you an intuitive grasp of how they work.
However, GANs are notoriously difficult to train, and many
other tricks are required to get them to work. Here are
some phrases you should Google if you decide to try
implementing your own GAN.

In the next video, we’ll look at a completely different
approach to training generator networks: autoencoders.

Deep generative models

Autoencoders

In this part, we'll start to lay the groundwork for Variational
Autoencoders. This starts with a completely different
abstract task: dimensionality reduction. We'll see that given
a dimensionality reduction model, we can often turn it into
a generative model with a few hacks. In the next part, we
will then develop this type of model in a more grounded
and theoretical way.

|section|Autoencoders|
|video|https://www.youtube.com/embed/t6GxDo1fSt0|
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What can we do with a generator?

- Generate “new” data
- Interpolation
- Data manipulation

- Dimensionality reduction

Before we turn to autoencoders, let's first look at what we
can do once we've trained a generator network. We'll look
at four use cases.

The first, of course is that we can generate data that looks
like it came from the same distribution as ours.
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ource: Sampling Generative Networks, Tom White

Another thing we can do is interpolation.

If we take two points in the input space, and draw a line
between them, we can pick evenly spaced points on that
line and decode them. If the generator is good, this should
give us a smooth transition from one point to the other, and
each point should result in a convincing example of our
output domain.

Remember that in some contexts, we refer to the input of a
generator network as its latent space.

interpolation grid

source: Sampling Generative Networks, Tom White

We can also draw an interpolation grid; we just map the
corners of a square lattice of equally spaced points to four
points in our input space, and run all points through the
generator network.


https://arxiv.org/abs/1609.04468
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spherical linear interpolation

source: Sampling Generative Networks, Tom White

If the latent space is high dimensional, most of the
probability of the standard MVN is near the edges of the
radius-1 hypersphere (not in the centre as itisin 1, 2 and 3-
dimensional MVNs).

High-dimensional MVNs look more like a soap bubble than
the dense pointcloud we're used to seeing in low-
dimensional visualizations.

For that reason, we get better results if we interpolate along
an arcinstead of along a straight line. This is called spherical
linear interpolation.

interpolation on real data

What if we want to interpolate between points in our
dataset? It’s possible to do this with a GAN trained
generator, but to make this work, we first have to find our
data points in the input spoace. Remember, during training
the discriminator is the only network that gets to see the
actual data. We never explicitly map the data to the latent
space.

We can tack a mapping from data to latent space onto the
network after training (as was done for these images), but
we can also learn such a mapping directly. As it happens,
this can help us to train the generator in a much more direct
way.

What can we do with a generator?

- Data manipulation
autoencoders only rgquires MO\FPLMS
. L . into the Latent space
- Dimensionality reduction
autoencoders only

Note that such a mapping would also give us a
dimensionality reduction. We can see the latent space
representation of the data as a reduced dimensionality
representation of the input.

We'll focus on the perspective of dimensionality reduction
for the rest of this video, to set up basic autoencoders. We
can get a generator network out of these, but it’s a bit of an
afterthought. In the next video, we’ll see how to train
generator networks with a data-to-latent-space mapping in
a more principled way.


https://arxiv.org/abs/1609.04468

autoencoders

bottleneck architecture for dimensionality
reduction.

input should be as close as possible to the
output

but: must pass through a small
representation.

Here’s what a simple autoencoder looks like. It’s is a
particular type of neural network, shaped like an hourglass.
Its job is just to make the output as close to the input as
possible, but somewhere in the network there is a small
layer that functions as a bottleneck.

After the network is trained, this small layer becomes a
compressed low-dimensional representation of the input.

= loss

4

decoder

encoder

latent space

Here’s the picture in detail. We call the bottom half of the
network the encoder and the top half the decoder. We feed
the autoencoder an instance from our dataset, and all it has
to do is reproduce that instance in its output. We can use
any loss that compares the output to the original input, and
produces a lower loss, the more similar they are. Then, we
just brackpropagate the loss and train by gradient descent.

Least-squares loss, absolute error loss and binary cross-
entropy are popular choices

We call the blue layer the latent representation of the input.
If we train an autoencoder with just two nodes on the latent
representation, we can plot what latent representation each
input is assigned. If the autoencoder works well, we expect
to see similar images clustered together (for instance
smiling people vs frowning people, men vs women, etc).

In a 2D space, we can’t cluster too many attributes together,
but in higher dimensions it’s easier. To quote Geoff Hinton:
“If there was a 30 dimensional supermarket, [the
anchovies] could be close to the pizza toppings and close to
the sardines.”



after 5 epochs (256 latent dimensions)
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To show what this looks like, we've set up a relatively
simple autoencoder consisting of convolutions in the
encoder and deconvolutions in the decoder. We train it on a
low-res version of the FFHQ dataset of human faces. We
give the latent space 256 dimensions.

For the PCA lecture we used black and white data to make
the task easier. Since we have a more powerful model, we
can use more varied full-color data. The StyleGAN was
trained on the full-resolution version of this data.

Here are the reconstructions on a very simple network,
with MSE loss on the output after 5 full passes over the
data.

after 25 epochs
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after 300 epochs
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reconstructions

After 300 epochs, the autoencoder has pretty much
converged. Here are the reconstructions next to the original
data. Considering that we've reduced each image to just 256
numbers, it's not too bad.

find the smiling vector

smiling

nonsmiling

latent space (256 dim)

One thing we can now do is to study the latent space based
on the examples that we have. For instance, we can see
whether smiling and non-smiling people end up in distinct
parts of the latent space.

We just label a small amount of instances as smiling and
nonsmiling (just 20 each in this case). If we're lucky, these
form distinct clusters in our latent space. If we compute the
means of these clusters, we can draw a vector between
them. We can think of this as a “smiling” vector. The further
we push people along this line, the more the decoded point
will smile.

This is one big benefit of autoencoders: we can train them
on unlabeled data (which is cheap) and then use only a very
small number of labeled examples to “annotate” the latent
space. In other words, autoencoders are a great way to do
semi-supervised learning.

Compare this to what we did in our previous dimensionality
reduction method of principal component analysis. There,
we found that dimensions in the reduced space
corresponded to high-level semantic concepts like gender
and expression. Here, the latent space is a little more
"entangled", but we can usually still find distinct directions
for high-level concepts (they are just not aligned with the
axes).



make someone smile/frown

encode to the latent space:
z = encode(x)

add/subtract some proportion of the smiling vector:
Zsmile = Z + Vsmile * 0.2

decode to a smiling face:
Xsmile = decode(Zsmite)

Once we've worked out what the smiling vector is, we can
manipulate photographs to make people smile. We just
encode their picture into the latent space, add the smiling
vector (times some small scalar to control the effect), and
decode the manipulated latent representation. If the
autoencoder understands "smiling" well enough, the result
will be the same picture but manipulated so that the person
will smile.
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Here is what that looks like for our (simple) example model.
In the middle we have the decoding of the original data, and
to the right we see what happens if we add an increasingly
large multiple of the smiling vector.

To the right we subtract the smiling vector, which makes the
person frown.

With a bit more powerful model, and some face detection,
we can see what some famously moody celebrities might
look like if they smiled.

source: https://blogs.nvidia.com/blog/2016/12/23/ai-
flips-kanye-wests-frown-upside-down/
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autoencoders

Keep the encoder and decoder: data manipulator.

Keep the encoder, ditch the decoder: dimensionality reduction.

Ditch the encoder, keep the decoder: generator network.

What we get out of an autoencoder, depends on which part
of the model we focus on.

If we keep the encoder and the decoder, we get a network
that can help us manipulate data in this way.

If we keep just the encoder, we get a powerful
dimensionality reduction method. We can use the latent
space representation as the features for a model that does
not scale well to too many features (like a non-naive
Bayesian classifier).

But this lecture was about generator networks. How do we
get a generator out of a trained autoencoder? It turns out
we can do this by keeping just the decoder.

turning an autoencoder into a generator

train an autoencoder
encode the data to latent variables Z
fitan MVN to Z
sample from the MVN
jﬁ

“decode” the sample

We don’t know beforehand where the data will end up in
latent space, but after training we can just check. We encode
the training data, fit a distribution to this point cloud in our
latent space, and then just use this distribution as the input
to our decoder to create a generator network.

This is the point cloud of the latent representations in our
example. We plot the first two of the 256 dimensions,
resulting in the blue point cloud.

To these points we, we fitan MVN (in 256 dimensions), and
we sample 400 new points from it, the red dots.



- E ‘ L) If we feed these points to the decoder, this is what we get.

It's not quite up these with the style gan results, but clearly,

3 the model can generate some non-existant people.
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what the latent space looks like. We just have to hope that it
looks enough like a normal distribution that our MVN

How to control the shape of the latent space? .
makes a good fit. In the GAN, we have perfect control over
ﬂhiaared"‘: °ptt|i”7"zm9? Can we optimize maximum what our distribution on the latent space looks like; we can
ikelihood directly? . . .
freely set it to anything. However, there, we have to fit a

Can we optimize for better interpolation directly? mapping from data to latent space after the fact.

We’ve also seen that this interpolation works well, but it’s
not something we've specifically trained the network to do.
In the GAN, we should expect all latent space points to
decode to something that fools the decoder, but in the

autoencoder, there is nothing that stops the points in

between the data points from decoding to garbage.

Moreover, neither the GAN nor the autoencoder is a very
principled way of optimizing. Is there a way to train for
maximum likelihood directly?

The answer to all of these questions is the variational
autoencoder, which we’ll discuss in the next video.

The video refers to a lecture that is no longer part of the
course. See the lecture notes for the missing pieces. We’ll
create a new video soon.

|section|Variational autoencoders|
|video|https://www.youtube.com/embed/inU]Jd7f931g|

Deep generative models

Variational autoencoders



http://mlvu.github.io

variational

- Force the decoder to also decode points near z correctly
- Forces the latent distribution of the data towards N(0, I)

- Can be derived from first principles

maximum likelihood

The variational autoencoder is a more principled way to
train a generator network using the principles of an
autoencoder. This requires a little more math, but we get a
few benefits in return.

maximum (log) likelihood objective

argmax Inpg(x)
0

We’ll start with the maximum log-likelihood objective. We
want to choose our parameters 6 (the weights of the neural
network) to maximise the log likelihood of the data. We will
write this objective step by step until we end up with an
autoencoder.

To simplify our notation a little bit, we will put the weights
of the network in the subscript of p rather than in the
conditional p(x | 6). Both notations mean the same thing
(the conditional notation is useful when you want to apply
Bayes’ rule to get a distribution on the parameters 6, but we
won't go into that in this lecture.

We're specifically using the natural logarithm In here
because it will simplify things a little down the road.

hidden variable model

u o

p=pelx|z)

+

The first insight is that we can view our generator as a
hidden variable model. We have a hidden variable z, a
standard normally distributed vector, which we then fed to
a neural network. The network produces a spherical normal
distribution N(}, 0), from which we sample variable x,
which we then observe. We assume that the data came from
this process too (or something equivalent to it), and we
want to choose the parameters 6 of the neural network to
mimic the process that generated the data as closely as
possible.

The network computes the conditional distribution of x
given z: pe(z| x). Note that the value we actually want to
maximize, pe(x) is not conditioned on z. We want to
maximize the probability of X, regardless of what latent
vector z generated it. While pe(z| x) is easy to compute (by
just running the network) pe(x) is not.

To compute po(x), we would have to somehow integrate
over all possible values of z and their prior probabilities.

Note also that we’re not thinking of this as an autoencoder



yet. That view will emerge. For now, we are just looking at a
generator network, and wondering how we might choose
its parameters so that we maximize the likelihood of the
data.

mode collapse

Here we see how the hidden variable problem causes our
mode collapse. If we knew which z was supposed to
produce which x, we could feed that z to the network to
compute the loss between the output and x and optimize by
backpropagation and gradient descent. In short, we’d have
both the input (z) and the target value (x) for our network.

The problem is that we don’t have the “complete” data
(given the assumptions we made about how the data were
generated). We don’t know the values of z, only the values
of x. This means we don’t have the inputs for our network,
only the targets.

A common way to solve problems of incomplete data is to
generate an approximate completion of your data. That is,
you guess the missing part (in this case z), and learn your
generator for x on the basis of this guess. That is, you build
a generator for x given z, and a guesser for z given x. Then
you train both together. The better the guesser gets, the
better the generator gets and vice versa.

This is how we will build our autoencoder.

It’s no longer part of the exam material, but the
Eexpectation Maximization (EM) algorithm works in exactly
the same way. Have a look at the extra resources if you're
curious. Looking at the differences and commonalities
between EM and the VAE is a great way to really get to grips
with the details of probabilistic programming.
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One way to solve this problem, would be to figure out which
latent variable z would be likely to generate a given x. That
is, for a given generator network, with fixed parameters 6, if
we are given an image x how likely is any given input z to
lead to the output sample x? This is the function pe(z]| x).

This, again, is not an easy thing to work out. To compute
p(z|x, 8) we would need to invert the neural network: work
out for a given output x, what the input z was. Or more
probabilistically: which input values z are likely to have
caused the network to output x.

The picture shows the Bayesian reasoning that is required:
this particular z leads to an output distribution N(}1, o) that
has its peak probability density very close to x. This
suggests z should have a high likelyhood, but z itself is very
unlikely under the prior probability N(0, I), from which we
sample z.

Network inversion is not impossible to do (we saw
something similar when we were discussing GANs), but it’s
a costly and imprecise business. Just like we did with the
GANS, it’s best to introduce a network that will learn the
inversion for us. We call this network g.

Unlike the GAN setting where we alternate the training of a
network and its inversion, we’ll figure out a way to train p
and q together. We'll try to update the parameters of p to fit
the data, and try we’ll update the parameters of q to keep it
a good approximation to the inversion of p, and we’ll do
both at the same time.

G (z | x) = pg(z | x)

For this purpose, we'll introduce g. Its function is to
approximate pe(z| x), the inversion of our generator
network.

Note that we're treating q as an approximation, but we're
not yet saying that it’s a good approximation. It could be a
terrible approximation, for instance at the start of learning,
but we will set up some equations that hold for any
approximation g no matter how good or bad.

Since we will implement q with a neural network, it will
have parameters, just like p. We will refer to the set of all its
parameters with the letter ¢ (phi).
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approximation for g (z | x)

We will draw the neural network q like this.

It maps a given instance x to a distribution on the latent
space. That is, we’re not generating a single z that is the
likely latent for a given x, we are creating a distribution that
will tell us for every z how likely it is that z would produce
the given x.

To make things easy for ourselves, we will assume that this
distribution can be well approximated by a single spherical
normal distribution. This means that q is a network with a

probabilistic output, just like p.

If the network works well, the correct latent representation
(the one that decodes to x if we feed it to the generator) will
get a high probability density under the distribution
produced by this network.

The structure of the q network, does not need to be related
in any way to the structure of the network p, and their
parameters ¢ and 0 are not tied together in any way.

In practice, it's common to make q the rough inverse
architecture of p, using deconvolutions in q where p uses
convolutions, and so on, but this is not necessarily the best
approach.

easily computable

With that, we can state our problem more precisely. We
have a generator network p that allows us to easily compute
the conditional probability of x given some z. We want to
choose its parameters so that the probability density of the
data is maximized.

We have an encoder network q that allows us to easily
compute the conditional probability of z given some x. We
want to choose its parameters so that the probabilities it
generates correspond as closely as possible to the
conditional probability z given x under the current weights
of the generator network.

Finally, there is one more function that we can easily
compute: the marginal pe(z). This is simply because we
defined it ourselves: the input to p is sampled from a
standard normal distribution. It’s value is chosen
completely independently of how p functions or what x it
produces, so the marginal distribution on z is simply the
standard normal distribution.

This, then, is our challenge: tune the weights of these two



networks to maximize the probability of the data under the
generator, and do it in such a way that we only ever need to
compute these three functions.

Po(x|2)

q¢(Z|X)

Putting everything together, this is our model. If we feed q
an instance from our data x, we get a normal distribution on
the latent space. If we sample a point z from this
distribution, and feed it to p we get a distribution on x. If the
networks are both well trained, this should give us a good
reconstruction of x.

The neural network p is our probability distribution
conditional on the latent vector. q is our approximation of
the conditional distribution on z.

We are beginning to see the autoencoder emerge. Note that
this is relatively incidental. We are just trying to train the
generator network, and all we've done is introduce g as an
approximation to the inverse of p. At no point did we set out
to build a dimensionality reduction method.

arg max

Inpg(x)

Now, we promised that we could optimize these two
networks together in a principled way. We will start with
the maximum likelihood objective, which is hard to
optimize directly, and rewrite step by step into a loss
function that affects both networks.

The maximum likelihood loss doesn’t involve q yet. But
we'll rewrite it later to include g.



a very useful decomposition

Inp(x) = L(q,p) + KL(q,p)

with :
p=rp(z|x)
q(z | x) any approximation to p(z | x)
KL(q,p) KL divergence between p(z | x) and q(z | x)
p(x|[z)p(z)

L(g,p) =E4In FEIES

We will first show the following decomposition. This is a
very useful property, and it’s used often to deal with hidden
variable models.

We’ve dropped the parameter subscripts to simplify the
notation.

The idea is that when we introduce an approximation to
q(z|x) for p(z|x), we can then look at the Kulback-Leibler
(KL) divergence between the two that expresses how good
the approximation is. The smaller the KL divergence is, the
better the approximation. If the KL divergence is zero, then
the approximation is perfect and q(z|x) and p(z|x) express
the same function.

It turns out that the sum of the KL divergence and the
function L as defined in the slide, is the log-probability of x.

Note that the components of L are exactly the three
functions we can compute. We still need to deal with the
fact that it’s an expectation, but this hopefully shows that
we're getting closer to our target.

therole of L

Inp(x) = L(q,p) + KL(q,p)
Inp(x)
. L(q,p) KL(q,p)
o L(q,p)
perfect approximation k
o L(q,p) KL(q,p)
poor approximation [ t

If we take p and its parameters as given, we can use the
following reasoning to understand what the function L
means. We know that given p, the log-likelihood of the data
p(x) is fixed. We also know that the KL divergence is always
non-negative. This means that for any g, the KL term must
be smaller than the log-likelihood, and the L term is what
makes up the difference.

This means that if q is a perfect approximation, L is equal to
the log likelihood, the very thing we wanted to approximate.
This is relevant, because, as we will show, L

what’s our loss?

Inp(x) =L(q,p) + KL(q,p)

variational lower bound
or evidence lower bound (ELBO)

o P2
L(q,p) =E,4 IHW

The idea of the variational autoencoder is to take the L
term, and use this as our loss.

The thinking is that since it's a lowerbound on the
likelihood (the quantity we're trying to maximize), anything
that increases L will also increase our likelihood. The better
we maximise L, the better our model will do.

Note that this is only a lowerbound because we know that
the KL term cannot be negative. If the KL divergence could
be negative, the L term could be larger or smaller than the
log-likelihood.



lower bound objective

Inpy(x) = Llqv, pw) + KL(qv, Pw)

model space

Here’s a visualisation of how a lower bound objective
works. We're interested in finding the highest point of the
blue line (the maximum likelihood solution), but that’s
difficult to compute. Instead, we maximise the orange line
(the evidence lower bound). Because it’s guaranteed to be
below the blue line everywhere, we may expect to be
finding a high value for the blue line as well. To some extent,
pushing up the orange line, pushes up the blue line as well.

How well we do on the blue line depends a lot on how tight
the lower bound is. The distance between the lower bound
and the log likelihood is expressed by the KL divergence
between pw(z|x) and qv(z|x). That is, because we cannot
easily compute pw(z|x), we introduced an approximation
qv(z|x) . The better this approximation, the lower the KL
divergence, and the tighter the lower bound.

Inp(x)

= L(q.p) +KL(q,p)
LI LR 1L
q(z | x) q(z | x)

E,.qInp(x|z)p(x)—E,~qInp(z|x)

p(x|z)p(x)

=EFE, qln ————
Py

=E,qp(x) < Inp(x)

First, for completeness, we need to prove that our
decomposition actually holds. This requires only the basic
properties of probability and expectations that we already
know from the preliminaries.

It’s easiest to work backwards: we’ll state the
decomposition, and then rewrite it into the log-likelihood of
the data.

First, we fill in the definition of L and of the KL divergence.

Note the use of expectations. Since z is a continuous
variable, the expectation and KL divergence are integrals
rather than sums.Since we only use the properties of the
expectation that are the same for both the sum and integral
version, we never need to deal with integrals explicitly.

Next, we take out the denominator q(z|x) on both sides.
Taking this out of the logarithm gives us an exta term inside
the expectation, which we can take out of both expectations.
This gives us - E q(z|x) from the first term and + E q(z|x)
from the second so they cancel out.

Then, we apply the reverse logic to the second term, and
move it into the first, giving us a new denominator. The
factors p(x|z) in the numerator and denominator cancel out
and we are left with an expectation over p(x). Note that the
thing we’re taking the expectation for (z) doesn’t appear in
p(x): we're taking the expectation over a constant. So, we
remove the expactation, and arrive at our goal.



minimize -L(q, p)

_ p(x|z)p(z)
7]_((:[, p) = 7]EZN(I In W
=—Elnp(x|z) —Elnp(z) + Elnq(x | z)
=EIn qx|z) x|z
~Ew T Ep(xy
=KL(q(z [ x), p(2)) — Esuqaix) Inp(x | 2)
Mo,

With that, we are almost ready to start using L as a loss
function. We just need a few tweaks to allow us to compute
it efficiently in a deep learning system like Pytorch.

First, since we want to implement a loss function, we want
something to minize. Since we want L as big as possible,
we’ll minimize -L.

All three probability functions we are left with are ones we
can easily compute: q(z|x) is given by the encoder network,
p(x|z) is given by the decoder network, and p(z) was chosen
when we defined (back in part 1) how the generator works,
if we marginalize out x, the distribution on z is a standard
multivariate normal.

If we break all three out of the expection, and re-arrange we
see that we get two very interpretable terms:

- The KL divergence between the distribution q provides
for the latent z of x and the prior that p uses for z (which
is a standard normal distribution). Note that we're not
comparing q to the thing it’s approximating here. We're
comparing a distribution that is conditioned on x to one
that is independent of x. This means that we don’t
necessarily want this term to go all the way to zero. We’ll
see later that it functions as a kind of regularizer.

- The log probability of x given z, under the expectation
that z is sampled from q(z|x). Here, we see the
autoencoder begin to emerge. If we compute q(z|x),
sample z from it, and then compute - In p(x|z), the
resulting value should (in expectation) be as low as
possible.

loss function

KL(q(z | x),p(z))

Let's see if this is a loss function we can implement in a
system like Pytorch.

The KL term is just the KL divergence between the MVN
that the encoder produces for x and the standard normal
MVN. This works out as a relatively simple differentiable
function of mu and sigma, so we can use it directly in a loss
function.

Remember that 0. is usually restricted to a diagonal matrix,
so the network just outputs a vector of the same size as |1,
which we take to be the diagonal of the covariance matrix.

We’ll spare you the working out of the closed-form
expression of the KL divergence between Gaussians. If you
need it, it's in the slides for the deep learning course. Suffice
it to say that it’s a simple function of the output of q that’s
easy to implement in a system like Pytorch.



—EqInp(x|z)
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approximate as: T Z Inpy(x]zi)
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keep things simple: L=1

The second part of our loss function requires a little more
work. It’s an expectation for which we don’t have a closed
form expression. Instead, we can approximate it by taking
some samples, and averaging them.

This is the idea of Monte Carlo approximation of expections:
to approximate the expectation of f(x) under some
probability p, you just take a bunch of samples of x from p
and average the resulting values of f(x). IT’s what we almost
always do implicitly when we use a sample average to
represent a population.

To keep things simple, we just take a single sample. We'll be
computing the network lots of times during training, so
overall, we’ll be taking lots of samples, and the optimization
method we use (gradient descent) is robust to a little
variance.

So, we replace z (the random variable) by z’ (the sample),
and remove the expectation.

We now have almost a fully differentiable model.
Unfortunately, we still have a sampling step in the middle
(and sampling is not a differentiable operation). How do we
get from a distribution on z to a sample z, in a way that we
can backpropagate through?

loss(q,p) = KL(q(z | x),N(0,1)) —Inp(x|z)
| Ly | Ox |
Hy
.
Ey
N4(0,1) | with E;~N(0,1)
Ea
N4 (, o) e®o+p with e~N%(0,1)

The key is to look at the way we normally sample from a
normal distribution.

First, sampling from a standard normal distribution in d
dimensions is as simple as taking d samples from a one-
dimensional standard normal distribution and sticking
them into a d-dimensional vector e. If you do this, the
resulting vector e is distributed according to a d
dimensional multivariate normal distribution.

We'll take the algorithm for sampling from a standard
normal as read (we don’t need to dig into it). The default
approach, if you're interested, is called the Box-Muller
transform.

Then, if we want to sample from a diagonal distribution
N(}, o) with vector mean |1 and vector covariance o, we just
take a sample e from the standard normal distribution, and
element-wise multiply e by ¢ and then add .. The resultis a
sample from N(u, 6).



e~N%0,1I)
f ‘\ N%(u,,0,) : e® 0, + 1,

Looking at this algorithm, and applying it to our sample
from N(}1z, 0-)—the distribution produced by q—we can see
two things.

First, the random aspects of the sampling don't depend on
the output q. We can do all the random parts (generating e)
before we even know what |1, and o are.

Second, the rest of the algorithm is a simple, differentiable
and affine operation. We just take e and multiply it by a
vector and add another vector.

loss(q,p) = KL(q(z | x),N(0,I)) —Inp(x | e ® 0, + 11,)

reparametrization
Erick

This means that we can basically work the sampling
algorithm into the architecture of the network. We provide
the network with an extra input: a sample from the

standard normal distribution.

Note that this requires the network to produce standard
deviations, not variances. So long as the outputs are
positive, we can just interpret them as standard deviations,
and assume that the network will learn to produce standard

deviations.

Why does this help us? We're still sampling, but we've
moved the random sampling out of the way of the
backpropagation. The gradient can now propagate down to
the weights of the q function, and the actual randomness is

treated as an input, rather than a computation.

And with that, we have a fully differentiable loss function
that we can put into a system like Keras or pytorch to train

our autoencoder.

This idea, of working the sampling algorithm into our
network, and interpreting the random source of the
sampling as another input, is called the reparametrization
trick.



loss(v,w) = KL(qy(z | x),N(0,1)) — Inp,(x | e ® 0y + 11,)
KL loss reconstruction loss

The two terms of the loss function are usually called KL loss
and reconstruction loss.

The reconstruction loss maximises the probability of the
current instances. This is basically the same loss we used
for the regular autoencoder: we want the output of the
decoder to look like the input.

The KL loss ensures that the latent distributions are
clustered around the origin, with variance 1. Over the whole
dataset, it ensures that the latent distribution looks like a
standard normal distribution.

|

7

The formulation of the VAE has three forces acting on the
latent space. The reconstruction loss pulls the latent
distribution as much as possible towards a single point that
gives the best reconstruction. Meanwhile, the KL loss, pulls
the latent distribution (for all points) towards the standard
normal distribution, acting as a regularizer. Finally, the
sampling step ensures that not just a single point returns a
good reconstruction, but a whole neighbourhood of points
does. The effect can be summarized as follows:

The reconstruction loss ensures that there are points in the
latent space that decode to the data.

The KL loss ensures that all these points together are laid
out like a standard normal distribution.

The sampling step ensures that points in between these
also decode to points that resemble the data.

To understand what happens in the VAE, you should focus
on the tension between the reconstruction loss and the
other two forces. If we had only the reconstruction loss, the
encoder could put the data in a very space set of points in
the latent space, and draw very narrow, low variance
distributions around these. This leads to a kind of
overfitting: the data is very precisely encoder in the latent
space, but nothing ensures that the rest of the latent space
decodes to something useful.

The KL loss pulls the encoder away from this behavior. It
ensures that the decoder wants to output distributions with
relatively wide variances. This means that not just a single
point decodes to X, but a large region of points does.

question What happens if we have no reconstruction loss to
balance the KL loss? Do we ever want the KL loss to reach
its minimum of 07 |hide|No, if the KL loss is 0, then the
output of the decoder is always equal to N(0, I). This means
that the encoder produces a constant output regardless of
the input and information makes its way out of the
autoencoder:|

The sampling helps the KL loss achieves its aim of
spreading out the latent representations. It forces the
decoder to generate the data from many points that are
spread out over the latent space, not just the ones that are



most likely according to the decoder.

question What happens if we sample a point z’ that has high
probability under q(z|x1), but also under q(z|xz)? That is
the latent space Gaussians for two points in the data
overlap a dit and z’ falls in the overlapping region? How
does this affect the encoder and the decoder? |hide|The
decoder doesn’t know whether it’s supposed to generate x1
or Xz, so it will learn to average (mode collapse) between
them. This how it learns to interpolate. The encoder
probably gets a high score on the KL loss, since the
overlapping Gaussians mean they are probably both close
to N(O, I). However, the reconstruction loss would get
higher if the Gaussians were less overlapping because that
would tell the encoder more clearly whether it needs to
generate X1 Or Xz.|

choosing rec. loss for images

—Inpy(x| e ® o, + 11,)

—InN(x|y, 0)
—InN(x|i, ¢) = (x — 1)?

Ix —

H(output, target)

squared error

absolute error

sharper images
Laplace distribution

cross-entropy
fast convergence, not a real distribution
cf. Continuous Bernoulli P

To define an autoencoder, we need to choose the output
distribution of our decoder, which will determine the
precise form of the reconstruction loss. In these slides,
we've used a diagonal normal distribution, but for images,
that's not usually the best choice.

We can get slightly better results with a Laplace
distribution, but convergence will still be slow.

Better results are achieved with the binary cross entropy.
This doesn't correspond to a proper distribution on
continuous valued image tensors, but it's often used
anyway because of the fact convergence. To fix this
problem, you can use something called a continuous
Bernoulli distribution, which will give you fast convergence
and a theoretically correct VAE.

after 300 epochs
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Here are some reconstructions for the regular autoencoder
and for the VAE. They perform pretty similarly. There are
slight differences if you look closely, but it's hard to tell
which is better.
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For completeness, here is the smiling vector, applied to the
VAE model.
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with VAEs Here are some examples from a more elaborate VAE.

source: Deep Feature Consistent Variational Autoencoder
- ——————— —— ——— — — — — — — by Xianxu Hou, Linlin Shen, Ke Sun, Guoping Qiu

add
smiling
vector
subtract
v smiling
" vector
add
sunglass
vector
add
sunglass
vector
subtract
sunglass
" % - % % vector

source: Deep Feature Consistent Variational Autoencoder by Xianxu Hou, Linlin Shen, Ke Sun, Guoping Qiu




Add
Smiling

Remove
Smiling

Add
Eyeglass

Remove
Eyeglass

I[An animated example of latent space interpolation in the
DCVAE] (https://houxianxu.github.io/assets/dfcvae/
combined.gif)

source: https://houxianxu.github.io/assets/project/dfcvae

from worksheet 5

for epoch in range(5):
for images, _ in tqdm(trainloader): # if tqdm gives you trouble just remove it
b, ¢, h, w = images.size()

# forward pass
z = encoder (images)

# - split z into mean and sigma

zmean, zsig = z[:, :latent size], z[:, latent size:]

kl = kl_loss(zmean, zsig)

zsample = sample(zmean, zsig)

o = decoder(zsample)
rec = F.binary_cross_entropy(o, images, reduction='none')

rec = rec.view(b, c*h*w).sum(dim=1)

# -- Reconstruction loss. We ask pytorch not to sum the loss, and sum over the
#  channels and pixels ourselves. This gives us a loss per instance that we

# can add to the k1 loss

loss = (rec + kl).mean() # sum the losses and take the mean
loss.backward ()

OPytorch.ipynb %

Here is what the algorithm looks like in Pytorch. Load the
5th worksheet to give it a try.

https://github.com/mlvu/worksheets/blob/master/
Worksheet%205%2C%20Pytorch.ipynb

In this worksheet, the VAE is trained on MNIST data, with a
2D latent space. Here is the original data, plotted by their
latent coordinates. The colors represent the classes (to
which the VAE did not have access).

If you run the worksheet, you'll end up with this picture (or
one similar to it).


https://houxianxu.github.io/assets/project/dfcvae
https://github.com/mlvu/worksheets/blob/master/Worksheet%205%2C%20Pytorch.ipynb

interpolation

AE

i went to the store to buy some groceries .
i store to buy some groceries .

i were to buy any groceries .

horses are to buy any grocerics .

horses are to buy any animal .

horses the favorite any animal .

horses the favorite favorite animal .

horses are my favorite animal .

VAE

he was silent for a long moment .
he was silent for a moment .

it was quiet for a moment .

it was dark and cold .

there was a pause .

it was my turn .

While the added value of the VAE is a bit difficult to detect
in our example, in other domains it’s more clear.

Here is an example of interpolation on sentences. First
using a regular autoencoder, and then using a VAE. Note
that the intermediate sentences for the AE are non-
grammatical, but the intermediate sentences for the VAE
are all grammatical.

source: Generating Sentences from a Continuous Space by
Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai,
Rafal Jozefowicz, Samy Bengio
https://arxiv.org/abs/1511.06349

summary: generative modeling

GANs VAEs
Iy
D

||
o

inversion of

the gemerator

We see that GANs are in many ways the inverse of
autoencoders, in that GANS have the data space as the
inside of the network, and VAEs have it as the outside.

GANs and VAEs

Allow us to train generator networks, avoiding mode

collapse

GANs VAEs
Better for images, often Work for language, music,
poor in other domains. etc.

Ad-hoc model, difficult to Derived from first principles.

establish what is being

optimized. Allow mapping from data to

latent space.

Can't handle discrete data

! Can't handle discrete latent
easily.

variables easily.

Derived by inverting a Derived by inverting a
discriminator. generator.




VAEs and PCA

Mapping to low-dimensional whitened latent space (zero,
mean, decorrelated).

PCA VAEs
Linear transformation Nonlinear transformation
Analytical solution GD required
Principal components Latent dimensions not
often meaningful, ordered usually meaningful.
by impact. Directions in latent space
meaningful.
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mlcourse@peterbloem.nl

This week and the last, we’ve discussed a lot of probability
theory. With these tools in hand, we can go back to our
discussion on social impact, and try to make it more
precise. We can now talk a lot more precisely about how to
reason probabilistically and what kind of mistakes people
Deep Generative Models tend to make. Unsurprisingly, such mistakes have a strong

Social impact 3 impact on the way machine learning algorithms are used
and abused in society.

|section|Social impact 3|
|video|https://www.youtube.com/embed/r4DYGXmbk_E|



mailto:mlcourse@peterbloem.nl
http://mlvu.github.io

“The act of suspecting or targeting a person on the
basis of assumed characteristics or behavior of a [...]
group, rather than on individual suspicion.”

quote source: https://en.wikipedia.org/wiki/Racial_profiling 107

Specifically , in this video, we’ll look at the problem of
profiling.

When we suspect people of a crime or target them for
investigation, based on their membership of a group rather
than based on their individual actions, that’s called
profiling.

Probably the most common form is racial profiling; which is
when the group in question is an ethnic or racial group.
Examples include black people being more likely to be
stopped by police, or Arabic people being more likely to be
checked at airports.

Other forms of profiling, such as gender or sexual
orientation profiling also exist in various contexts.

There's softwa

rce: https://wwwpropublica.or

We saw an example of this in the first social impact video: a
prediction system (essentially using machine learning)
which predicted the risk of people in prison re-offending
when let out. This system, built by a company called
Northpointe, showed a strong racial bias.

As we saw then, it’s not enough to just remove race as a
feature. So long as race or ethnicity can be predicted from
the features you do use, your model may be inferring from

race.

racial profiling

POLICE RACIAL PROFILING OVERWHELMINGLY
APPROVED BY DUTCH PUBLIC

By Janene Pieters on June 6, 2016 - 09:02

4

B

Profiling doesn't just happen in automated systems. And
lest you think this is a typically American problem, let’s
look a little closer to home.

A few years ago, a Dutch hip-hop artist called Typhoon was
stopped by the police. The police admitted that the
combination of his skin colour and the fact that he drove an
expensive car played a part in the choice to stop him. This
caused a small stir in the Dutch media and a nationwide
discussion about racial profiling.

The main argument usually heard is “if it works, then it is
worth it” That is, in some cases, we should accept a certain
amount of racism in our criminal procedures, if it is in some
way successful.

This statements hides a lot complexity: we're assuming that
such practices are successful, and we're not defining what
being successful means in this context. Our responsibility,
as academics, is to unpack such statements, and to make it
more precise what is actually being said. Let’s see if we can
do that here.


https://en.wikipedia.org/wiki/Racial_profiling
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://nltimes.nl/2016/06/06/police-racial-profiling-overwhelmingly-approved-dutch-public

We’ll focus on the supposed pros and cons of profiling and
on what it means for a profiling method to be successful,
regardless of whether it’s an algorithm or a human doing
the profiling.

Dutch Rutte government resigns
over child welfare fraud scandal

As an example of how automated systems can perform
profiling, without being explicitly programmed to, we can
also stay in the Netherlands.

Less than a month ago as this section's video was recorded,
however, the Dutch government fell. In a parliamentary
investigation at the end of last year, it was found that the tax
service had wrongly accused an estimated 26 000 families
of fraudulent claims for childcare benefits, often requiring
them to pay back tens of thousand of euros, and driving
them into financial difficulty.

There were many factors at play, but an important problem
that emerged was the use of what were called “self-learning
systems.” In other words, machine learning. One of these,
the risk-indicator, candidate lists for people to be checked
for fraud. The features for this classification included,
among other things the nationality of the subject (Dutch/
non-Dutch). The system was a complete black box, and
investigators had no insight into why people were marked
as high risk. People with a risk level above 0.8 were
automatically investigated, making the decision to
investigate an autonomous one, made by the system
without human intervention.

One of the biggest criticisms of the tax service in the child
welfare scandal is how few of the people involved
understood the use of algorithms in general, and the details
of the algorithms they were using specifically.

This hopefully goes some way towards explaining why
we've felt it necessary to discuss social impact in these
lectures. We're teaching you how to build complex systems,
and history has shown again and again that policy makers
and project managers are happy to deploy these in critical
settings without fully understanding the consequences. If
those responsible for building them, that is you and me,
don’t have the insight and the ability required to
communicate the potential harmful social impacts of these
technologies, then what chance does anybody else have?

https://www.groene.nl/artikel /opening-the-black-box

https://autoriteitpersoonsgegevens.nl/sites/default/files/
atoms/files/
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Since this is a sensitive subject, we’ll try to make our case as
precisely as possible, and focus on a specific instance,
where we have all the necessary data available: illicit drug
use in the US. The US has a system in place to record race
and ethnicity in crime data. The categorization may be
crude, but it'll suffice for our purposes.

From these graphs, we see on the left that black people
engage in illicit drug use more than people of other
ethnicities, and that they are also arrested for it more than
people of other ethnicities. However, the rate of use is only
marginally higher than that of white people, whereas the
arrest rate can be as much as five times as high as that for
white people,

This points to one potential problem: racial profiling may
very easily lead to disproportionate effects like those seen
on the right. Even if there’s difference in the proportion
with which black people and white people commit a
particular crime, it’s very difficult to ensure that the
profiling somehow honors that proportion. But we
shouldn’t make the implicit assumption that that’s the only
problem. If the proportions of the two graphs matched,
would profiling then be justified? Is the problem with
profiling that that we’re not doing it carefully enough, or is
the problem that we're doing it at all?

We'll look at some of the most common mistakes made in
reasoning about profiling, one by one.

sources:
https://www.washingtonpost.com/news/wonk/wp/
2013/06/04/the-blackwhite-marijuana-arrest-gap-in-nine-
charts/?utm_term=.322fc255f412


http://skeptics.stackexchange.com/questions/36797/do-black-people-and-white-people-use-drugs-at-the-same-rate-in-the-usa-but-blac
https://www.washingtonpost.com/news/wonk/wp/2013/06/04/the-blackwhite-marijuana-arrest-gap-in-nine-charts/?utm_term=.322fc255f412
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One problem with an automated system like that of
Northpointe is that there is a strong risk of data not being
sampled uniformly. If we start out with the arrest rates that
we see on the right, then a system that predicts illicit drug
use will see a lot more black drug users than white ones.
Given such a data distribution, it's not suprising that the
system learns to associate being black with a higher rate of
drug use.

This is not because of any fundamental link between race
and drug use, but purely because the data is not
representative of the population. We have a sampling bias.

It’s a bit like the example of the damaged planes in WWII
we saw at the start of the fourth lecture: if we assume a
uniform distribution in the data, we will conclude the
wrong thing. In that case we weren’t seeing the planes that
didn’t come back. Here, we aren’t seeing the white people
that didn’t get arrested.

Note that it’s not just algrithms that suffer from this
problem. For instance, if we leave individual police officers
to decide when to stop and search somebody, they will
likely rely on their own experience, and the experience of a
police officer is not uniform. There are many factors
affecting human decision making, but one is that if they
already arrest far more black than white people, they are
extremely likely to end up with the same bias an algorithm
would end up with.

So let’s imagine that this problem is somehow solved, ande
we get a perfectly representative dataset, with no sampling
bias. Are we then justified in racial profiling?

bias amplification

Figure 2.12 Past Month lllcit Drug Use among
Persons Aged 12 or Older, by
Race/Ethnicity: 2002-2013

sources
Zhao,J, Wang, T, Yatskar, M., Ordonez, V., & Chang, K. W. (2
preprint arXiv:1707.09457.

Leino, K, Black, E, Fredrikson, M.
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You'd be forgiven for thinking that if a bias is present in the
data, that the model simply reproduces that bias. In that
case, given a dataset without sampling bias, we would start
with the minor discrepancies on the left, and simply
reproduce those. Our model would be biased, but we could
make the case that it is at least reproducing biases present
in society.

However, it’s a peculiar property of machine learning
models that they may actually amplify biases present in the
data. That means that even if we start with data seen on the
left, we may still end up with a predictor that
disproportionately predicts drug use for black people.

An example of this effect is seen on the right. For an image
labeling tasks, the authors measured gender ratios in the
training set, for subsets of particular nouns. For instances,
for images containing both a wine glass and a person, we
see that the probability of seeing a male or female person in
the data is about 50/50, but in the predictions over a
validation set, the ratio shifts to 60/40.
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It’s not entirely clear where this effect comes from. The
second paper quoted shows that it’s related to our choice of
inductive bias, so it's a deep problem, that gets to the heart
of the problem of induction. Even the Bayes’ optimal
classifier can suffer from this problem. For our current
purposes it's enough to remember, that even if our input
has biases that are representative, there’s no guarantee that
our output will.

It appears that this is a problem that may be impossible to
solve. But let’s imagine, for the sake of arguments, that we
somehow manage it. What if we get a perfectly
representative dataset with no sampling bias, and we
somehow ensure that our model doesn’t amplify bias. Can
we then do racial profiling?

prosecutor’s fallacy

Abusing conditional probability

p(black | drugs) vs. p(drugs |
black)

The probability that a basketball
player is tall is different from the
probability that a tall person plays
basketball.

Much of racial profiling falls into the trap of the
prosecutor’s fallacy. In this case the probability that a
person uses illicit drugs, given that they’re black is very
slightly higher than the probability that they do so given
that they are white, so the police feel that they are justified
in using ethnicity as a feature for predicting drug use (it
“works”).

However, the probability that a person uses illicit drugs
given that they are black is still very much lower than the
probability of not using illicit drugs given that they they are
black. This probability is never considered.

As we see in the previous slide the rates are around
p(drugs|black) = 0.09 vs. p(~drugs|black) = 0.91. If the
police blindly stop only black people, they are
disadvantaging over 90% of the people they stop.

To help you understand, consider a more extreme example
of the prosecutor’s fallacy. Let’s imagine that you're trying
to find professional basketball players. The probability that
somebody is tall given that they play professional
basketball, p(tall| basketball) is almost precisely 1. Thus, if
you're looking for professional basketball players, you are
justified in only asking tall people. However, the probability
of somebody playing professional basketball given that
they’re tall, is still extremely low. That means that if you go
around asking tall people whether they are profesional
basketball players, you'll end bothering a lot of people
before you find your basketball player, and probably
annoying quite a few of them.



that is a fair representation, our model doesn’t amplify

) biases, and we correctly use Bayes’ rule.
What if

the data is a fair representation of the population Can we then use the model to decide whether or not to stop
black people in the street?
and

The answer is still no.
the model doesn’t amplify bias

and At this point, we may be certain that our predictions are
accurate, and we have accurately estimated the probability

we've correctly used Bayes'rule? accurately that a particular black person uses drugs illicitly.

However, the fact that those predictions are accurate tells

us nothing about whether the action of then stopping the
person will be effective, justified, or fair. That all depends on
what we are trying to achieve, and what we consider a fair
and just use of police power. The accuracy of our
predictions cannot help us guarantee any of this.

This is an extremely important distinction in the
responsible use of Al. There is a very fundamental
difference between making a prediction and taking an
action based on that prediction.

predictions

We can hammer away at our predictions until there’s
nothing left to improve about them, but none of that will tell
. us anything about whether taking a particular action is
aCtlo ns justified. How good a prediction is and how good an action
is are two entirely different questions, answered in
completely different ways.

Recall the Google translate example from the first lecture.
Given a gender neutral sentence in English, we may get a

Afer prediction saying that with probability 70% the word
= Google Transiate ) = Google Translate 2 doctor should be translated as male in Spanish and with

e e probability 30% it should be translated as female. There are

My friend is a doctor x My friend is a doctor x
almost certainly biases in the data sampling, and there is

L)

likely to be some bias amplification in the model, but in this

Mi amigo es doctor

Transiatons e gonderspachc, LEARN MORE.

case we can at least define what it would mean for this

Mi amiga es doctora rrmnise)

> probability to be accurate. For this sentence, there are true

AEEEER probabilities, whether frequentist or Bayesian, for how the
©

sentence should be translated. And we can imagine an ideal
model that gets those probabilities absolutely right.

However, that tells us nothing about what we should do
with those probabilities. Getting a 70/30 probability
doesn’t mean we are justified in going for the highest
probability, or in sampling by the probabilities the model
suggests. Both of those options have positive consequences,
such as a user getting an accurate translation, and negative
consequences, such as a user getting an accurate translation
and the system amplifying gender biases.


https://ai.googleblog.com/2020/04/a-scalable-approach-to-reducing-gender.html

In this case, the best solution turned out to be a clever
interface design choice, rather than blindly sticking with a
single output.

cost imbalance

expected cost:

probability of misclassifiying ham x cost of misclassifying
ham +

ity of i i mx . ~ ,

spam predr‘.chiov\ action

This is related to the question of cost imbalance. We may
get good probabilities on whether an email is ham or spam,
but until we know the cost of misclassification we don’t
know which action to prefer (deleting the email or putting
it in the inbox). The expected cost depends on how accurate
our predictions are, but also on which actions we decide to
connect to each of the predictions. This is an important
point: cost imbalance is not a property of a classifier in
isolation: it’s a property of a classifier, inside a larger
system that takes actions. The cost imbalance for a system
that deletes spam is very different from the cost imbalance
in a system that moves spam to a junk folder.

Here, we should always be on the lookout for creative
solutions in how we use our predictions. Moving spam to a
junk folder instead of deleting it, showing users multiple
translations instead of just one, and so on. The best ways of
minimizing cost don’t come from improving the model
performance, but from rethinking the system around it.

In questions of social impact, the cost of misclassification is
usually extremely hard to quantify. If a hundred stop-and-
searches lead to two cases of contraband found, how do we
weigh the benefit of the contraband taken off the streets
against the 98 stop-and-searches of innocent individuals. If
the stop-and-search is done in a biased way, with all black
people being searched at least once in their lifetime and
most white people never being searched, then the stop-and-
search policy can easily have a very damaging effect on how
black people are view in society.

It’s very easy, and very dangerous to think that we can
easily quantify the cost of mistakes for systems like these.



https://twitter.com/OdedRechavi

correlation and causation

A and B are correlated: | can predict A from B (and vice
versa)

A causes B: changing A causes a change in B (but not vice
versa.

Correlation does not imply causation.

No correlation without causation.
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A large part of choosing the right action to take based on a
prediction, is separating correlation and causation. A lot of
social issues, in Al and elsewhere, stem from confusions
over correlation and causation, so let’s take a cerful look at
these two concepts.

Two observables, for instance, being black and using illicit
drugs are correlated, if knowing the value of one can be
used to predict the value of the other. It doesn’t have to be a
good prediction, it just has to be better than it would be if
we didn’t know the value of the first.

This doesn’t mean that the first causes the second. I can
from the smoke in my kitchen that my toast has burned, and
if somebody tells me that my toaster has been on for half an
hour, I can guess that there’s probably smoke in my kitchen.
Only one of these causes the other. There are many
technical definition of what constitutes causaility, but in
general we say that A causes B if changing A causes a
change in B. Turning off the toaster removes the smoke
from my kitchen, but opening a window doesn’t stop my
toast burning.



spurious correlations

Number of people who drowned by falling into a pool

correlates with
Films Nicolas Cage appeared in

1999 2000 0 2002

06 207 200 2009

When talking correlation, the first thing we need to be on
the lookout for is spurious correlations. According to this
data here, if we know the number of films Nicolas Cage
appeared in in a given year, we can predict how many
people will die by drowning in swimming pools.

This is not because of any causal mechanism. Nicolas Cage
is not driven by drowning deaths, and people do not decide
to jump into their pools just because there are more Nicolas
Cage movies (whatever you think of his recent career). It's a
spurious correlation. It looks like a relation in the data, but
because we have so few examples for each, it's possible to
see such a relation by random chance (especially if you
check many different potential relations).

The key property of a spurious correlation is that it goes
away if we gather more data. If we look at the years 2009-
now, we will (most likely) not see this pattern.

wide and tall data

few features

many features

few instances
many instances

wide data

tall data

Gathering more data can hurt or help you here.

The more features you have, the more likely it is that one of
them can be predicted from the other purely by chance, and
you will observe a correlation when there isn’t any. We call
this wide data.

Adding instances has the opposite effect. The more
instances, the more sure we can be that observed
correlations are true and not spurious. We call this tall data.

Thus, if we are conservative with our features, and liberal
with our instances, we can be more confident that any
observed correlations are correct. The litmus test is to state
the correlations you think are true and then to test them on
new data. In life sciences, this is done through replication
studies, where more data is gathered and the stated
hypothesis from an existing piece of research is evaluated
be the exact same experiment. In machine learning, we
withhold a validation set for the first round of experiments,
and then a test set for the second (and sometimes a meta-
test set for replication studies).

overfitting = spurious correlation

observed .
use to find correlations
data
withheld .
use to confirm correlations
data

This is essentially a way of guarding against spurious
correlations, or in other words, overfitting is just predicting
from a spurious correlation. The definition of a spurious
correlation is one that disappears when you gather more
data, so if our correlation is spurious, it should not be
present in the withheld data.

A good machine learning model finds only true correlations
and no spurious correlations. How to make that distinction
without access to the withheld data, is the problem of
induction.

This also tells us that using many features increases the
probability of overfitting. If we see the target label as
another column in our data, then the more different
features we have, the more likely it is that over our small set
of instances, one of them if correlated with the training
labels. If this correlation is spurious, it goes away if we
gather more data: that is, it's not present in the validation
and test sets. Predicting from such a spurious correlation is
overfitting.


https://www.tylervigen.com/spurious-correlations

no correlation without causation
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So if we rule out spurious correlations, what can we say
that we have learned when we observe a correlation?

If I see you have a runny nose, I can guess you have a cold.
That doesn’t mean that having a runny nose causes colds. If
I make the exam too difficult this year, it affects all grades,
so somebody can predict from your failing grade that other
students are also likely to have a failing grade. That doesn’t
mean that you caused your fellow student to fail. This is the
cardinal rule of statistics: correlation is not causation. It is
one that you've hopefully heard before.

There is another rule, that is just as important, and a lot less
famous. No correlation without causation. If we observe a
correlation and we’ve proved that it isn’t spurious, there
must be a causation somewhere.

Simplifying things slightly, these are the ways a correlation
can occur. If A and B are correlated then either A causes B, B
causes A, or there is some other effect that causes both A
and B (like me writing a difficult exam). A cause like C is
called a confounder.

It is important to note that C doesn’t have to be a single
simple cause. It could be a large network of many related
causes. In fact, causal graphs like these are almost always
simplifications of a more complex reality.

actions and causality

o o
being black using drugs
o o o
being black poverty using drugs

So let’s return to our example of illicit drug use in America.
We know that there’s a small correlation between race and
illicit drug use (even though there is a far greater
discrepancy in arrests). What is the causal graph behind
this correlation?

At the top we see what we can call the racist interpretation.
That is, racist in the literal sense: seeing race as the
fundamental cause of differences in behaviour. Put simply,
this interpretation assumes a fundamental, biological
difference in black people that makes them more
susceptible to drug addiction. Few people hold such views
explicitly these days, and there is no scientific evidence for
it. But it’s important to remember that this kind of thinking
was much more common not too long ago.

At the bottom, is a more modern view, backed by a large
amount of scientific evidence. Being black makes you more
likely to be poor, due to explicit or implicit racism in society,
and being poor makes you more likely to come into contact
with illicit drugs and makes you less likely to be able to



escape addiction.

There is a third effect, which I think is often overlooked:
poverty begets poverty. The less money your parents have,
the lower your own chances are to escape poverty. Having
to live in poverty means living from paycheck to paycheck,
never building up savings, never building up resilience to
sudden hardship, and never being able to invest in the long
term. This means that on average, you are more likely to
increase your poverty than to decrease it.

The reason all this is relevant, is that for interventions to be
effective, they must be aligned to the underlying causes. In
the world above, racial profiling may actually be effective
(although it could still be unjust). However, in the picture
below, racial profiling actually increases pressure on black
people, pushing them further into poverty. Even though the
police feel like they’re arresting more drug users, they are
most likely strengthening the blue feedback loop (or one
similar to it).

expected cost:

probability of misclassifying guilty X cost
misclassifying guilty +

1 probabi ity of-misc! ass'ﬁgt‘nginr‘pf at stof

pRédlestifydpg innocent ackion
o o o
being black poverty using drugs

cost imbalance

If we ignore data bias, and assume a perfect predictor, we
still have to deal with the cost of misclassification.

Misclassifying a guilty person can feed into this blue
feedback loop. In the best case, it leads to embarrassment
and loss of time for the person being searched. But there
can also be more serious negative consequences.

One subtle example is being found out for a different crime
than the one you were suspected of, due to the search. For
instance, imagine that the if the predictor classifies for
driving a stolen car, and during the stop, marijuana is found.
This may at first seem like a win: the more crimes caught,
the better. However, the result of doing this based on
profiling is again that we are feeding into the blue feedback
loop.

There is a certain level of crime that we, as society allow to
pass undetected, because detecting it would have too many
negative consequences. It would cost too much to detect
more crime, or infringe too much on the lives of the
innocent.

This is true for any society anywhere, although every
society makes the tradeoff differently. However, if we stop
people because they are predicted, through profiling, to be
guilty crime X, and then arrest them for crime Y, then we
end up setting this level differently for black people than for
white people. Essentially, by introducing a profiling
algorithm for car theft, we are lowering the probability that
people get away with marijuana possession, and we are
lowering it further for black people than for white people.



Causality plays a large role in setting the rules for what is
and isn’t fair. In law this is described as differentiation,
justly treating people differently based on their attributes
and discrimination, unjustly treating people differently
based on their attributes.

For instance, if we are hiring an actor to appear in in an ad
for shaving cream, we have a sound reason for preferring a
male actor over a female actor, all other qualifications being

the same. There is a clear, common-sense causal connection
between the attribute of being male and being suitable for
the role.

If we are hiring somebody to teach machine learning at a
university, preferring a male candidate over a female one,
all else being equal, is generally considered wrong, and
indeed illegal. This is because there is broad (though not
universal) agreement that there is no causal link between
your gender and how suitable you are as a teacher of
machine learning. There may be correlations, since machine
learning is still a male-dominated field, but no causal link.

That is, differentiation is usually allowed, if and only if there
is an unambiguous causal link between the sensitive
attribute and job suitability.

everything we’ve learned.

So what if we: Say we somehow get a representative dataset, which is

- Sample a representative dataset, difficult. We somehow prevent bias amplification, which

. Prevent bias amplification, may be impossible. We apply Bayesian reasoning correctly,
which is possible, we carefully design sensible actions

- Apply Bayesian reasoning correctly, . . ) .
based one some quantification of cost, which is very
+ Carefully design sensible actions, difficult. And we take care to consider all causal relations to

. Only follow causal patterns? avoid inadvertent costs and feedback loops, which is

Can we then permit ourselves some profiling? difficult at best.

Imagine a world where we can do all this, and get it right.

128

Are we then justified in applying profiling?



Consequentialism: the consequences of our actions
determine how ethical our actions are.

What we have taken so far is a purely consequentialist view.
The consequences of our actions are what matters. The
more positive those consequences, the more ethical the
system is, and vice versa.

prP=w
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Consider the famous trolley problem: there is a an out of
control trolley thundering down the tracks towards five
people, and you can throw a switch to divert it to another
track with one person on it. This illustrates some of the
pitfalls of consequentialist thinking.

The consequentialist conclusion is that throwing the switch
is the ethical choice. It saves five lives and sacrifices one.

Now imagine a maverick doctor who decides that he will
kill one person, harvest their organs, and use them to save
five terminally ill people in need of transplants. With two
kidneys, two lungs and a heart he should easily be able to
find the patients to save.

From a consequentialist perspective, this is exactly the
same as the trolley problem. One person dies, five are saved.
And yet, we can be certain that many of the people who
considered throwing the switch in the trolley problem to be
the ethical choice, would not be so certain now.

Without taking a position ourselves, what is it that makes
the difference between these two situations? Why is the
second example so much less agreeable to many people?



Consequentialism: the consequences of our actions
determine how ethical our actions are.

Deontological ethics: moral principles determine how
ethical actions are.

Kant: “So act as to treat humanity, whether in thine own
person or in that of any other, always as an end, never
merely as a means.”

‘The ethics of dignity. John Laird, 1940

Without going into details, we can say that some actions are
in themselves more morally disagreeable than others,
regardless of the consequences. This quality, whatever it is,
leads to deontological ethics. Ethical reasoning based on
fundamental moral codes, regardless of consequences.

Such codes are often tied to religion and other aspects of
culture, but not always. Kant’s categorical imperative is an
example of a rule that is not explicitly derived from some
religious or cultural authority. Broadly, it states that to take
an ethical action, you should only follow a rule if you would
also accept it as a universal rule, applying to all.

One aspect that crops up in deontological ethics is that of
human dignity. This may be an explanation for the
discrepancy between the trolley and the doctor. Flipping
the switch is a brief action made under time pressure. This
is in contrast to the premeditated murder and organ
harvesting of an innocent person. The latter seems
somehow a deeper violation of the dignity of the victim, and
therefore a more serious violation of ethics.

Kant, again, considered this a foundational principle of
basic morality, to treat another human being as a means to
an end, rather than as an end in themselves is to violate
their dignity.

Consider the difference between killing a human being in
order to eat them and killing a human being to get revenge
for adultery. From a consequentialist perspective, the first
has perhaps the greater utility: in both cases, someone dies,
but in one of them we get a meal out of it. From the
deontological perspective of human dignity, the first is the
greater sin. When we cannibalize someone, we treat them
as a means to filling our stomach, without regard for their
humanity. When we Kkill out of revenge, even though it may
be wrong or disproportional, we treat the other as a human
being and our action is directly related to one of theirs.

fundamental rights

It is fundamentally unfair to hold an individual
responsible for the actions of others that share their
attributes.

Everybody has the right to to be judged on their own
actions.

hold responsible:
subject to a traffic stop, not give parole, search at an

airport, not give a credit card, make it more difficult to get a
job, subject to financial auditing.

To bring this back to our example, we can now say that our
analysis of racial profiling is entirely consequentialist. We
have been judging the cost of our actions and trying to
maximize it by building the correct kind of system. It is
perhaps not surprising that a lot of Al ethics follows this
kind of framework, since optimizing quantities is what we
machine learning researchers do best.

The deontological view, specifically the one focused on
human dignity, gives us a completely different perspective
on the problem. One that makes the correctness and
efficacy of the system almost entirely irrelevant. From this
perspective it is fundamentally unjust to hold a person
responsible for the actions of another. If we are to be
judged, it should be on our own actions, rather than on the
actions of another.

To prevent crime from being committed, or to make some
reparations after a crime is committed, some people need
to suffer negative consequences: this ranges from being
subjected to traffic stops to paying a fine. A just system only



subjects those people to these negative consequences, that
committed or planned to commit the crime. From this
perspective, racial profiling, even if we avoided all the
myriad pitfalls, is still a fundamental violation of dignity. It
treats the time and dignity of Black people as a means to an
end, trading it off against some other desirable property, in
this case, a reduction of crime.

While human dignity is often posed as hard constraint:
something that should never be violated, in many cases this
cannot be reasonably achieved. For instance, any justice
system faces the possibility of convicting innocent people
for the crimes of others. The only way to avoid this is to
convict no one, removing the justice system entirely. So, we
allow some violation of human dignity in order that we can
punish the guilty.

However, if we do have to suffer a certain probability that
our dignity will be violated, we can at least ask that such
violations are doled out uniformly.

you may be able to guess my opinion). You'll need to decide
Data is often not a representative sample for yourself where to draw the line. The only thing we ask is
Bias s often amplified by ML models (or people) that you have a clear idea of the arguments for and against.

If you argue that profiling is "effective”, can you explain

Correct Bayesian reasoning is difficult (especially for people) what exactly that means? Can you explain why none of the

Predictive models don't tell us what actions to take. For this statistical errors above are being made, or why their impact
we need a causal model. is outweighed by other factors?
Even if none of the mistakes are made, profiling may still be
unethical from a deontological perspective.

Specifically, it's usually considered violation of human dignity to hold someone and deontologica] arguments? Do you understand Why
responsible for the actions of others.

Do you understand the difference between consequentialist

arguments about human dignity cannot be countered with

arguments for the effectiveness of profiling?

image source: https://www.trouw.nl/nieuws/ouders-bij-
debat-toeslagenaffaire-mijn-leven-is-naar-de-
klote~bc3f3e52/
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